The Android Build system are described at:

You use build/ to set up a "convenience environment" for working on the Android source code. This file should be source'ed into your current shell environment. After doing so you can type 'help' (or 'hmm') for a list of defined functions which are helpful for interacting with the source.

The build system uses some pre-set environment variables and a series of 'make' files in order to build an Android system and prepare it for deployment to a platform.

Android make files end in the extension '.mk' by convention, with the main make file in any particular source directory being named ''.

There is only one official file named 'Makefile', at the top of the source tree for the whole repository. You set some environment variables, then type 'make' to build stuff. You can add some options to the make command line (other targets) to turn on verbose output, or perform different actions.

The build output is placed in 'out/host' and 'out/target' Stuff under 'out/host' are things compiled for your host platform (your desktop machine). Stuff under 'out/target/product/<platform-name>' eventually makes it's way to a target device (or emulator).

The directory 'out/target/product/<platform-name>/obj' is used for staging "object" files, which are intermediate binary images used for building the final programs. Stuff that actually lands in the file system of the target is stored in the directories root, system, and data, under 'out/target/product/<platform-name>'. Usually, these are bundled up into image files called system.img, ramdisk.img, and userdata.img.

This matches the separate file system partitions used on most Android devices.

During the build you will be using 'make' to control the build steps themselves. A host toolchain (compiler, linker and other tools) and libraries will be used to build programs and tools that will run on the host. A different toolchain is used to compile the C and C++ code that will wind up on the target (which is an embedded board, device or the emulator). This is usually a "cross" toolchain that runs on an X86 platform, but produces code for some other platform (most commonly ARM). The kernel is compiled as a standalone binary (it does not use a program loader or link to any outside libraries). Other items, like native programs (e.g. init or toolbox), daemons or libraries will link against bionic or other system libraries.

You will be using a Java compiler and a bunch of java-related tools to build most of the application framework, system services and Android applications themselves. Finally, tools are used to package the applications and resource files, and to create the filesystem images that can be installed on a device or used with the simulator.

Before you build anything, you have to tell the Android build system where your Java SDK is. (Installing a Java SDK is a pre-requisite for building).

Do this by setting a JAVA_HOME environment variable.

In order to decide what to build, and how to build it, the build system requires that some variables be set. Different products, with different packages and options can be built from the same source tree. The variables to control this can be set via a file with declarations of 'make' variables, or can be specified in the environment.

A device vendor can create definition files that describe what is to be included on a particular board or for a particular product. The definition file is called:, and it is located in the top-level source directory. You can edit this manually to hardcode your selections.

If you have a file, it sets all the make variables needed for a build, and you don't have to mess with options.

Another method of specifying options is to set environment variables. The build system has a rather ornate method of managing these options for you.

To set up your build environment, you need to load the variables and functions in build/ Do this by 'source-ing' the file into your shell environment, like this:

$ . build/